Abstract
The Rejection and Acceptance Complement Methods.

Exact Sampling Methods

The Metropolis algorithm and its variants are great, for they can be used to
generate ergodic Markov chains with, in principle, any pre specified stationary
distribution. Just choose an arbitrary starting point and eventually the chain
will begin sampling from its stationary distribution. The problem is, of course,
that (usually) we can’t be 100% sure about when this will happen. Exact
sampling methods, when available, are therefore more reliable and, often more
efficient than MCMC methods. For this reason MCMC sampling is almost
always used in combination with exact methods. This is specially true for the
Gibbs sampler where we need to generate from the full conditionals. What exact
method to use depends on the particular problem. There are literally hundreds
of methods available. The current bible is Devroye’s

(http://omega.stat.psu.edu:8008/summer9d9/lectured /hitp://cgm.cs.mcgill.ca/ luc))

book which is unfortunately not available online. Besides the only truly univer-
sal exact generator (the inverse cdf method introduced in lecture I

(http://omega.stat.psu.edu:8008/summer99/lectured/.. /lecturel /11.html)) the most

flexible exact algorithm is the rejection method.

The Rejection Method

The idea, I think first implemented by Von Neumann, is very simple. To sample
from f(z) find another simpler density g(z) from which you know how to sample
and such that cg(z) > f(x) for some ¢ > 1 (we say that cg envelopes f). Like
in the following picture:




Then generate uniformly under the graph of the envelope and accept only
samples that fall under the graph of f. In other words reject a sample if it falls
in between the envelope and the function f.

Copying from the bible:

Theorem 1 If f and g are densities on RP with, f(z) < cg(z) for all x € RP,
some ¢ > 1. Then the following algorithm

The Rejection Method
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UNTIL uy <1
RETURN x }

will produce a sample X = x with density f(z).

Proof: Consider the following two lemmas

Lemma 1 Let X be a random p-vector with density f(x). Let U be a uni-
form(0,1) r.v. independent of X, and let ¢ > 0. Then,

L. (X,cUf(X)) is uniform on, A= {(z,u) : z € RP,0 <u < cf(z)}
I1. If (X,U) is uniform on A, then X has density f(x).

Proof:
I. Let B C A, then

P[(X,cUf(X)) € B] = / Pl(z,cUf(z)) € BIX = 2]f(2)da
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where the second equality follows from Tonelli’s theorem, the independence
of X and U and the fact that cf (z)U is uniform(0,cf(x)). But,
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thus, for any B C A measurable we have,
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which means that (X, cU f(X)) is uniform on A.
II. We just need to show that, VB measurable, P[X € B] = [, f(z)dz. But,

P((X,cUf(X)) € B) =

PXeB] = P[XeB,0<U<cf(X)]
= P[(X,U)e By ={(z,u) :2 € B,0<u<cf(z)}]
B [ 5, dudz
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Lemma 2 Let X, Xs,... be iid vectors in RP. Let A C RP s.t. P[X € A] =

a>0. Let Y be the first X; € A. Then, VB C RP measurable,
P[X: € ANB
Py ¢ By = PE1L€ANE]
a
Moreover, if X1 is uniform on Ag D A then'Y is uniform on A.

Proof:

iP[Xl ¢A,...,Xi1¢A X, eB()4]
i=1

= ) (i-a)"'P[X, € B[ 4]
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Also, if X is uniform on Ay D A then for all measurable B,

P[Y € B

P[X1 € ABAo) _ |ABAo|/| Aol

Py eB] = o T [AeAl/[A|

|AB|
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therefore, Y is uniform on A.
We are now ready for the Theorem.

Proof: (that the Rejection Method is valid). In the first line the algorithm

generates (by Lemma 1, I) (X,cUg(X)) uniform on C = {(z,u) : z € RP,0 <
u < cg(z)}. However at exit time (by Lemma 2), (X,cUg(X)) is uniform on
C = {(z,u) : z € RP,0 < u < f(x)}. Notice that, by the assumption that
f(z) < cg(z) (i-e. that g envelopes f), C D A. Thus, (by Lemma 1, IT) X has
density f(x).



Best g is f itself

Let N be the number of pairs (z,u) generated by the rejection algorithm to
exit. We have,

P[N > ] PJ reject at least (i — 1) pairs]
PUY > 1) = (1 -a)!

where,

a = PSS <1l= [ PlUey) < [l

f(X)
f(x) 1
de = —.
cg(m)g(w) T =
The expected number of pairs generated by the algorithm is, < N > where,
N = PN>: ]_— i_lziz—:
SNm AR T g T

Thus, ¢ is the expected number of rejections and therefore it should be kept
as small as possible, i.e. as close as possible to its minimum value of 1. Since,
f(z) < cg(z), in order for ¢ to be small g must be close to f.

Example: To sample from the standard Gaussian we can use the rejection
method with g as the Laplace distribution. Notice that,

f(z) = 2m) 712 exp(=2?/2)

and in order to get an upper bound for f we need a lower bound for the energy,
i.e. for z2/2. But that follows easily from,

— |zl =0
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from where we get,

oxp(=r12) < exp(s = ) = 2 () (Lenpti)

the last term in parenthesis above, is the density of the Laplace distribution
which the above inequality shows to envelope the N(0,1) with,

1/2
c= <%) ~ 1.3155
™

Javascript Demo Implementation of the above in Javascript. Solution by
Ke Yang

(http://omega.stat.psu.edu:8008/summer99/lectured /kyang-1.html)
There are several variations of the rejection method in the bible. One fairly
general method that never rejects any samples is:



The Acceptance Complement Method

Suppose that we don’t know how to envelope f but,

f(@) = fi(2) + fa(2)

with, fi(z) >0, f2(z) > 0 and fi1(z) > g(z) where g is a density. Furthermore
suppose that we know how to sample from g and from f> (properly normalized),
then,

The Acceptance Complement Method

{

T < sample from g

u < unif(0,1)

IF u > fi1(z)/g(z) THEN z < sample from fao/ [ fo
RETURN x

}

Theorem 2 X =z is a sample from f.

Proof: Let a = [ f» and suppose that Y has density g. We have,
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Example: fi(z) = min{f(z),9(z)} and fo(z) = (f(z) — g(z))+. Then,
clearly fi(z) < g(z) and f(z) = fi(z) + fa(z). So if we know how to sample
from g and f,, we are done.

Another useful general split is available for almost flat densities on [—1,1],
i.e. densities f(z) such that,

sup f(x) — inf f(z) <

DN | =

then we may take,

glz) = 1/2for|z| <1
@) = f@)— (M~ ), with M = sup f(z)
folz) = M- % for |z| <1



which works since g and f2 are proportional to densities uniform on [—1,1] (so
easy to sample from). That f; is bounded above by g just follows from the
almost flat condition and that f; > 0 follows from the fact that,

0 <inf f(z) < = <sup f(z) <1

1
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Hence, the method can be used to generate from many densities symmetric
about with a single mode at 0, for which M = f(0) and inf f = f(1). For
example we can generate from the truncated Cauchy for |z| < 1. We have,

f(@)

2
= A0 for |[z] <1
which is almost flat since 2/7 — 1/m = 1/7 = 0.318 < 0.5. Using the property
that 1/X is Cauchy when X is Cauchy we can generate a complete Cauchy by
just using the Acceptance Complement Method to generate from the truncated
Cauchy and then with probability 1/2 return 1/X instead of X.
Example: Javascript implementation of the Cauchy with the above method.

A Trivial Perfect MCMC Method

If there is available a good envelope for f then the rejection method is preferable
to asymptotic methods based on Markov chains. The problem is that often
good envelopes are not easy to find. A bad envelope can be easier to find
and still be useful when combined with a Markov chain method. For example
it may be possible to show that f(x) < 10000g(x) which means that we can
use the rejection method but expect to generate, on the average, 10000(X,U)
pairs before accepting one vector X. In this case we can still use the rejection
method to generate a single observation of X which is warranted to have the
correct density f. Then, use the observation generated by the rejection method
as the initial point for a Markov chain method with statitionary distribution
f and harvest the complete path of the chain that is now sampling from its
asymptotic distribution.



