Figure 1: Two trajectories in phase-space

Abstract

Statistical Physics (part 2), the original Metropolis Algorithm, Simu-
lated Annealing.

Phase Space

It is convenient to visualize a mechanical system as a point in the 6 N dimen-
sional space (g, p) of all the positions and momenta of all the N particles.

Due to the complexity of macroscopic systems (N ~ 10%4) it was necessary to
abandon determinism and use statistics to describe the system. The predictions
of statistical physics are expected to hold only on the average.

Instead of the precise initial conditions (which are unknown), statistical
physics describes the system by a probability distribution over phase space,
p(g,p) for t = 0. As it will be seen later, Hamilton’s equations imply the con-
servation, at all time, of this initial distribution. This is the famous, Liouville’s
theorem. The determination of p is then the first step.

Maxwell-Boltzmann-Gibbs Distribution

Different forms for p are found to be needed depending on the particular data
available about the system. We will be concerned only with the so called canon-
ical distribution. We assume that the system is not isolated but in thermal
equilibrium with a heat bath at constant temperature 7. Statistically this is
equivalent to the assumption that the average energy of the molecules is con-
stant. The novel idea of Boltzmann was to discretize phase-space to find the
most likely distribution for p.

Each particle has a definite position and momentum. Subdivide the positions
and momentums for each particle into m (6 dimensional) cells of equal size.



Assume that these cells are small enough so that the value of the energy within
each cell is approximately constant. Let E; be the energy in the j-th cell.
Assume further that the cells, even though small, they are still big enough to
accommodate lots of particles inside. These are reasonable assumptions justified
by the smallness of atomic dimensions (~ 10~ cm), the size of typical N and
the smoothness of energy surfaces. This discretization of the phase-space for
each molecule into m equal size cells induces a discretization of the phase-space
of the system into, m” equal size cells. With the help of this discretization, the
state s of the system is specified by,

se{1,2,...,m}"

indicating the cell number for each of the N particles. If the particles are as-
sumed to be identical and indistinguishable, then permutations of the molecules
with a given cell number have no physical consequences. All it matters is how
many molecules end up in each of the cells and not which ones did. Thus, the
actual set of distinguishable physical states is much smaller than m?” it is,

(N +m—1)!
Nl(m —1)!

corresponding to the number of ways of splitting N into the m cells. There are,

N!
T onine! L ng!

ways of throwing the N molecules into the m cells in such a way that ny of
them are in the first cell, ns in the second cell, etc. If we assume a priori that
the molecules have equal chance of ending in any of the cells then the number
of ways can be turned into a probability for the state s = (n1,...,nm,),
P= L’ X constant
nilng! .. ngy!

Hence, the most likely distribution of balls among the cells is the one that
maximizes this probability subject to whatever is known about the system.
When the temperature is all we know we maximize P subject to the constraint
that the average energy is fixed at kT. Where k is a phenomenological (not
fundamental) constant needed to change the units from ergs (units of energy)
to degrees (usual units for temperature). It is known as the Boltzmann constant
and it is about,

k =1.380 x 10 'ergs per degree centigrade
Using the fact that N and the n; are large we can use Stirling’s approximation,
logn! ~nlogn —n

to get,



logP = NlogN — Z(nJ logn; —n;) + constant
J

-N ij log p; + constant
J

where,
nj

Pj:N

Thus, P is the probability of observing the probability distribution (p1,...,pm)-
A probability of a probability... A prior!

Pxe ij: & P

Known as an entropic prior, for the quantity in the exponent (sans N) is the
famous expression for the entropy of a probability distribution. If we treat the
p; as if they were continuous variables we can obtain the most likely a priori
distribution by solving,

max— Y p;log p;
;
Y pi=1
j
> piE; = kT
j

Using Lagrange multipliers for the constraints we can find the maximum by
maximizing,

£:ijlog pj—a—ij—/BZPjEj
J J J

Taking derivatives,

2—;=0=>10gp,—1—6E,—a:0

from where we get,

where the normalization constant,

Z = Ze_ﬂE"



is known as the partition function. In order to satisfy the constraint of average
energy we need to take,

E; —BE; 00
% ~ / EBe PEJE = kT
Ei € : 0

and since the middle integral is the mean of the exponential distribution we get,

1
B=r

The Original Metropolis Algorithm: Circa 1953

It was proposed as an algorithm to simulate the evolution of a system in a heat
bath towards thermal equilibrium. From a given state i of energy FE;, generate
a new state j of energy E; by a small perturbation, e.g. changing one of the
position coordinates of one of the particles a little. If the new proposed state j
has smaller energy than the initial state ¢ then make j the new current state,
otherwise accept state j with probability,

Aij(T) = exp(—(E; — E;)[kT)

where T is the temperature of the heat bath. After a (possibly) large number
of iterations we would expect the algorithm to visit states of different energies
according to the canonical distribution. In fact this can be rigorously justified
by showing that the sequence of states visited by the algorithm forms an ergodic
Markov Chain with the canonical distribution as the stationary distribution for
the chain.

Let, us get closer to the theory of Markov Chains by using the usual notation.
Define,

X, = state of the system at time ¢
The one step transition probabilities for the Metropolis (like) algorithm are,

Gi;(T)A:;(T) ifi#j

7 1,

where,

G;;(T) = prob. of generating j from i
A;i(T) = prob. of accepting j from i

The acceptance Metropolis probabilities can be written as,

Aij(T) = exp(—(E; — Ei)+ /kT)



where,

_Joz ifzx>0
T+ =1 0 otherwise

Any, probability distribution 7 over the set of states satisfying the reversibility
condition known as detailed balance,

DijTi = PjiTj

will be a stationary distribution for the Markov Chain with transition proba-
bilities p;;. This can be easily seen by adding over j both sides of the previous
equation,

PXy=j] = m= sz'jﬂi
j
= D piimi = P[Xip1 = ]
j

It can be readily checked that when the generating probabilities are symmetric
in ¢ and j i.e. when,

Gi;(T) = G5(T)
we have detailed balance with,
1
= exp(—E;/kT)

i.e. the canonical distribution. Just consider each of the cases separately. It
is obviously true when ¢ = j and for ¢ # j with E; < E; the detailed balance
condition reduces to the simple identity,

exp(—(Ej — E;)/kT) exp(—E;/kT) = exp(—E; /kT)

the other case interchanges ¢ with j, which is also obviously true. This does
not show, however that the chain is ergodic, i.e. that the distribution of X; will
converge to the stationary canonical distribution.

Simulated Annealing

Annealing is a physical process often used in practice to get rid of cracks and
impurities from a solid in order to increase its strength. This is done by first
heating the solid until it melts and then slowly decreasing the temperature to
allow the particles to re-arrange themselves in the state of lowest possible energy
(ground state). The opposite of annealing is known as quenching. The solid
is melted but then the temperature is quickly lowered so that the particles get
frozen in a local minimum for the energy ( meta-stable state). It is convenient



to think of annealing as a way of using nature to solve a minimization problem
in billions of variables. The annealing process is simulated by the Metropolis
algorithm when we take a sequence of slowly decreasing temperatures converging
to 0. If we run the Metropolis algorithm with each value of the temperature for
a long time until it reaches the asymptotic cannonical distribution, then in the
limit when the temperature approaches 0 the system will be found on state ¢
with probability,

exp{—E;/kT}

TILI}) i (T') Tli{}) Zj exp{—Ej/kT}
exp { E*k}Ei }
= lim

70y exp {75}
where,

E* =min E; = Global min of energy
2

Thus, the exponents (in the above ratios) are always either zero or negative. In
the limit when 7" — 0 the terms with negative exponents disappear and we get,

N*

lim 7(T) = " iherwise

L if B = E*
T—0

where,
N*=|{i: E; = E*}|

Thus, limy_,¢m;(T) is uniformly distributed over the set of states of global
minimum energy!

Simulated annealing is one of the few known algorithms assuring convergence
to a global minimum. It is often used in combination with efficient steepest
descent methods, such as conjugate gradients, as a way for avoiding getting trap
in local minima. This is what the theory says but in practice the performance
of annealing depends primarily on the cooling schedule, i.e. how exactly is
the temperature decreased and second on the stopping criterion, i.e. how it is
decided to stop the algorithm, for example how close to zero is the temperature
allowed to go before stopping.



