Abstract
Introduction, the basics of Monte Carlo Integration, and the elements
of statistical physics (part 1).

Introduction

add the intro from linux

Integration by Simulation

The Basic Idea
Let z € RP, g(z) > 0 with
/g(x)dm =1.

The integral of any real valued integrable function f can be written as:

[:/f(x)dxz/%g(w)dx

The function g is a probability density. Thus, the last integral can be read
as an expectation with respect to the pdf g, i.e.,
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The classical Strong Law of Large Numbers (SLLN) then assures that for n
sufficiently large,
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with probability close to one, when Xg, Xj,... are iid as X with pdf g.

This is just the standard: “sample mean goes to the expected value” kind of
statement. Moreover, by the Central Limit Theorem (CLT),
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goes (in Law) to the standard Gaussian distribution, provided that o (which is
the standard deviation of the r.v. Y = f(X)/g(X)), is finite and not zero. The
size of o controls the accuracy of the approximation. Notice, that I,, give or
take,
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is a random interval with about 95% chance of covering the value of I. The
smaller the value of o, the more accurate is I,, as an estimator of I.



Best g
The best g is then the one that makes ¢ as little as possible. We have,

The integral of f, I, is independent of g so the best g is obtained by solving the
variational problem,
2
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over all positive pdfs g, i.e. functions such that, g(z) >0 and [ g = 1. Using a
Lagrange multiplier A for the normalization constraint, we see that we need to

find g and A solving,
: (@)
mm/ [ (@) +)\g(a:)] dx.

The Euler-Lagrange equation for the Lagrangian:

f2
L(g,\) = i Ag

is just the derivative of £ w.r.t. g equal 0. This gives,
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from where we deduce that the best g is,
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where ¢ is a normalization constant (the square root of A\ actually). This is
clearly a global minimum for o (at least when f is positive) since,
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and this is zero, due to the fact that ¢ = I for positive functions f.

Example
Take,

1
I:/ z2dz = 0.666 ...
—1



Best g(z) = 1.5z for z in the interval [—1,1]. So for this g, I,, = I for all n and
the Monte Carlo algorithm is really not useful. We need to know I to implement
the algorithm but the purpose of the algorithm is to compute I itself!. This is
the problem with the optimal g when f is every where positive. Nevertheless,
by knowing that the optimal g must follow the shape of | f(z)| we can tune up g
to gain efficiency. For example, g(x) = |z|, that goes down and up with 22, will
be better than the uniform g(z) = 1/2 in the interval [—1,1]. In fact, to obtain
a given accuracy we need to generate more than 6 times as many iterations with
the uniform than with |z|.

e Look at the first 200 iterations using g(z) = 1/2

(http://omega.stat.psu.edu:8008 /summer99/lecturel /z2a-js.html) Look at
the Javascript for this problem.

(http://omega.stat.psu.edu:8008 /summer99/lecturel /r2a-js.txt)

e Look at the first 200 iterations using g(z) = |z|

(http://omega.stat.psu.edu:8008 /summer99/lecturel /z2b-js.html) Look at
the Javascript for this problem.

(http://omega.stat.psu.edu:8008 /summer99/lecturel /2b-js.txt)

In the implementation of the previous examples we have used the following
fundamental property of random variables for generating samples from g:

Theorem 1 Let Uy, Us, ..., U, be iid uniform on [0,1] and let F' be o distribu-
tion function. Then,

F~YUy), F~YUy),...,F~Y(U,)
are 1id with cdf F

Proof

PIF7'(Uh) <y, F7H(U2) <2y, F7'(Un) <yn] = PULSF(y1),-..,Un < F(yn)]

The first equality follows from the fact that F~! is always non-decreasing
and the last equality is just the assumed hypothesis of iid uniform Uj.



The Elements of Statistical Physics

The first Markov Chain Monte Carlo algorithm, (The Metropolis algorithm)
appeared in the statistical physics literature. The aim was to simulate the
evolution of a solid in a heat bath towards thermal equilibrium.

In this section we introduce the main ideas, and notation from statistical
physics that will be used in the rest of the course. Statistical Mechanics has
been a continuous source of innovative ideas in mathematics and statistics but it
is often not included as a required course for graduate students in mathematical
statistics. This one-hour introduction will help to fill the gap.

From Newton to Hamilton

The formulation of classical mechanics evolved from the original laws of Newton,
the most famous (and computationally most useful) being the second law:

F =ma

i.e. Force equals mass times acceleration. The acceleration being the second
derivative with respect to time of the position ¢, denoted by,

a=4q

For a single particle, ¢ denotes its position vector (e.g. (z,y,z) in Cartesian
coordinates) and for a system of particles ¢ denotes the long vector with all
the position coordinates for all the particles. General field forces are arbitrary
vector functions of position and velocity but all the four fundamental forces
of nature (gravitational, electro magnetic, weak and strong) preserve energy
and are therefore conservative and coming from gradients w.r.t. ¢ of potential
functions V. Thus, we are only interested in field forces such that,
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dq
for some scalar potential function,
V=V(gq

Newton’s laws tell us that the evolution of a system of particles is governed
by a second order system of differential equations:

F(q,q) =mi

For a system of N particles without constraints, there are 3N second order dif-
ferential equations to be solved. The theory of differential equations (developed



in great part to understand mechanics) shows that under mild regularity condi-
tions on the functions F' and ¢(t), the system has a unique solution for a given
set of initial conditions (for example for initial values of positions and velocities
for each particle). A second order system can always be reduced to a first order
system by duplicating the number of equations. By introducing the momentum
b,

p=mg
or equivalently,
._ P
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we can now replace the original system of 3N second order differential equations
by an equivalent first order system of 6N equations in the variables p and gq.
Just augment the previous equations with the original ones (but now written
with only first derivatives in terms of ¢ and p),

p= F(g,p/m).

Hamiltonian Formulation

By introducing the function H (g, p) representing the total energy of the system,
i.e. the sum of kinetic and potential energies,

H(q,p)

Energy = Kinetic + Potential
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we obtain Hamilton’s equations by replacing the right hand side of the system
above with the derivatives of H:
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The Hamiltonian formulation of classical mechanics has proven extremely
useful for the development of modern physics but it contains as much informa-
tion as the original laws of Newton. As before, given the initial conditions of
position ¢(0) and momentum p(0) at time ¢ = 0, Hamilton’s equations predict



the past and future of the system with complete certainty. The problem is that
for macroscopic systems the number of particles N is of the order of Avogadro’s
number,

N ~ 10%*

and we need to provide of the order of 61024 initial conditions and to solve the
same number of first order differential equations to be able to “see” the truth
implied by the equations of classical mechanics. The tremendous size of the
complexity of this task is the origin of statistical physics.



