Maximum-Entropy Velocity Profiles and Boundary Layer Theory in Laminar to Turbulent Flow

R.K. Niven1,2

(1) Niels Bohr Institute, Copenhagen University, Denmark.
(2) School of Aerospace, Civil and Mechanical Engineering, The University of New South Wales at ADEA, Canberra, ACT, 2600, Australia.

(Email: rniven@fys.ku.dk, r.niven@adfa.edu.au)

10 April 2007

Abstract

This study applies Jaynes’ MaxEnt method \[1\] - as extended by Chiu \[2\] - to determine the “most probable” steady-state velocity profile \(u(y)\) in several classical fluid flow systems, including axial flow in a cylindrical pipe \[2\] and flow between parallel plates. In each case, the analysis yields an \textit{analytical solution} for the velocity profile over the entire range of laminar to turbulent flow, as a function of the maximum velocity \(u_{\text{max}}\) and parameter \(M\). In each case, the predicted profile reduces to the well-known laminar solution at \(M = 0\), whilst for \(M > 0\) it gives an equation which supersedes the semi-empirical correlations commonly used for turbulent flow profiles \[2-4\]. For plane parallel flow, to match the known solutions at \(M = 0\) it is necessary to consider the relative entropy function (Kullback-Leibler divergence), which incorporates the Bayesian prior distribution. The main steps of the analysis - including handling of the prior - and the predicted profiles are presented here.

The analysis is then used to derive a new maximum-entropy laminar-turbulent boundary layer theory, for the velocity profile in steady flow along a flat plate. For \(M = 0\), this approximates the Prandtl-Blasius solution for laminar boundary layer flow \[4,5\]. For turbulent flow, it yields a previously unreported solution set.

References:

Key Words: MaxEnt; fluid mechanics; velocity profile; turbulent flow; boundary layer.